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At the present time, quantitative studies of exact solutions of dynamic 
problems in the theory of elasticity are usually conducted by means of 
approximate asymptotic methods. These methods vary depending on the 
portion of the disturbed layered medium being investigated. In a number 
of cases it is difficult to estimate the accuracy and region of appli- 
cability of the formulas that are obtained. 

For a more accurate and complete investigation which determines the 
entire wave field in a uniform manner, contour integrals are sometimes 
used (uniformity is very important here in order to have a simple 
standard scheme for numerical computations). The description of the 
solution is thereby reduced to integrals distributed along segments of 
the real axis which are evaluated by usual methods of numerical integra- 
tion. As a point of departure, one can take any of the known forms of 
exact solutions [l-41 for concentrated excitations. The transition to 
distributed excitations, as is well known, can then be effected by appli- 
cation of the principle of superposition. It is convenient to use, for 
example, solutions in the form of formulas which are given in [33. The 
present paper is addressed to the task of the reduction of these formulas 
to the simplest real integrals suitable for computation. 

1. According to [31 the exact solution for a concentrated excitatioa 
of the Heaviside E function type is expressible (for an isolated wave) 
in cylindrical coordinates r, 8, z as a double integral of the form 

a, a+ico . 
up = H s G, (5) ekvO(l;) 4 J, (kt) dk (v =o, 1; a>O) (1.1) 
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or its derivatives with respect to the time t. In this formula, G,(i) de- 
notes an algebraic expression which depends on the shear modulus and the 
propagation velocity of the wave, and q(c) is a linear function depending 
on the time t and thicknesses of the layers hi (including the moving 
ordinate z) 

n 

Here. as the arbitrary parameter b, one usually chooses the smallest (of 
those possible) of the velocities of propagation of transverse waves in 

the layered medium, Yj is the ratio of b to the velocity of propagation 
of a wave of some type in the jth layer, and p. is the number of passages 

-1 1 in the jth layer by the wave of velocity byj . 

co- 

(1.2) 

Let H be some linear parameter, say, the thickness of one of the 
layers; we introduce nondimensional quantities 

‘F=bt/H, x=r/H (1.3) 

Then Formulas (1.1) and (1.2) take on the forms 

co a+im 

G, (6) 8Nc) dt J, (kx) dk (Y =o, 1; a>O) 

T(5)=r6-_i qj$~l+lftP 

j=O 

(1.4) 

(1.5) 

The integration with respect to k can be carried out if the contour 

in Equation (1.4) u - im, o + im is suitably deformed (as was indicated 
in [5]). As ;: result, the wave field can be represented by single-f012 

integrals 
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it is found that there are two complex conjugate branch points of the 
radical 4 ((q(g) I* + x2) to the right of the contour 2. If one transfer8 
the point of observation from in back of a dilatational wave front to the 
region ahead of the front, then the aforementioned branch points remain- 
ing to the right of the contour 1 collapse onto the imaginary axis (as a 
limiting transition from a distributed to a concentrated excitation in- 
dicates [51). 

All remaining branch points and possible poles in the integrand are 

located to the left of the contour 1 and turn out always to be imaginary 
and mutually conjugate. 

It should be kept in mind that the first term in the second of 
Formulas (1.6) could have been deleted in accordance with the residue 
theorem, since G,(c) decreases sufficiently rapidly for 5 - a, However, 
in order to carry out limiting transitions which are sometimes 
encountered it is convenient to retain this term in the general formulas. 

We remark that the solutions (1.6) can be represented in finite form 
(without integrals) only at the wave fronts [3-51 (where their values 
exactly coincide with the zeroth order of approximation by the ray 
method), and likewise at the axis points x = 0 L5.71. The investigation 
of the wave field for x # 0 in back of the fronts and between fronts will 
be our further task. 

2. In the computation of the integrals (1.6) at points in back of a 
dilatational wave front by means of the residue theorem, it is convenient 
to deform the contour 1 into the left half-plane in such a manner that it 
envelopes the cuts and goes to infinity. As a result, it is not difficult 
to obtain the expressions 

in which uVo denotes the portion of the wave field corresponding to the 
residues at the possible poles of the function G,(c) on the imaginary 
axis; the limits of integration I and n coincide with the smallest and 
largest moduli of the branch points of the functions G,(c), with G,(ih) 
being the value of G,(g) on the right side, and g+(ih) and cp,(ih) the 
values of (p(A) on the right and left sides respectively of the cuts 
emanating from the points i-f;‘. 
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The minus sign in the brackets corresponds to the case when C,(s) con- 
tains a factor 5 of odd power, and the plus sign to the case when C,(g) 
contains a factor 5 of even power. 

In the computation of the wave field ahead of the dilatational wave 
front but behind the front of the head wave it is convenient to deform 
the contour 1 into the right half-plane because the cuts which in the 
previous case were located to the right of the imaginary axis now go over 
to the imaginary axis (the contour 1 collapses onto it). Hence this field 
is expressed by the integrals 

(2.3) 

in which the lower limit A’ > I is the maximum of two possible real roots 
of the equation 

‘p+ (ih) - ix = 0 (2.4) 

We note that in the presence of two or more interfaces the functions 
G,(c) may in some (rather infrequent) cases contain poles on the imagin- 
ary axis between branch points. In this case, if these poles fall within 
the interval of integration, the above integrals are to be understood in 
the sense of principal values. 

Another form of the representation of the solution in integrals which 
are defined on a segment of the real axis is obtained if in the Formula 
(1.4) the Bessel functions are replaced by their integral representations 
and the integration is carried out with respect to k and 5. This has the 
following form in the entire disturbed region 

uo=-2.--1-e 
H I41 = --& Im 

s 
Ic 2G (51) cos h & 

cp’Q) 
(2.5) 

where <l is the root of the 

A similar representation 
was first obtained in hl. 

equation 

~((6)+izCOSh=O (2.6) 

of the solution for the case of half-plane 

A comparison of Formulas (2.1) to (2.3) with Formulas (2.5) shows 
that the later (in appearance the simpler) formulas are less convenient 
for numerical integration. As h varies from 0 to TI, the variable <I 
varies over certain complex values which are different for different X, 
hjH-: -r. In the computation of the integrals (2.5) it is in fact 
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necessary to tabulate an extremely complicated integrand over the entire 
complex right half-plane. On the other hand, in the computation of the 
integrals (2.1) to (2.3) this tabulation is necessary only on portions 
of the imaginary axis. Therefore it is more convenient to use Formulas 
(2.1) to (2.3). 

For angles of incidence less than the limiting angle, when only 
Formulas (2.1) to (2.2) come into play, the integrals take on finite 
values in the entire excited region UP to the wave front. Likewise, for 
angles of incidence larger than the limiting angle, when Formulas (2.3) 
are also to be taken into account, all of the integrals take on infinite 
values on the dilatational wave front. This is inconvenient, both for 
the numerical integration in (2.1) to (2.3) (requiring a separation of 
the singularities), as well as in the subsequent use of the superposition 
principle (Duhamel integral) for the transition to an arbitrary excita- 
tion. In order to avoid these difficulties, it is convenient to tabulate 
the antiderivatives of the integrals with respect to T rather than the 
integrals themselves. Similarly, it is then necessary to evaluate the 
Duhamel integrals by parts. 

3. If one determines the antiderivatives with respect to T of the in- 
tegrands in Formulas (1.6). then these formulas can be written in the 
form 

(3.1: 

(3.2) 

We remark that it turns out not to be possible to immediately deter- 
mine the antiderivatives of the integrands in Formulas (2.5). 

The application of the residue theorem to the integrals (3.1), (3.2) 
gives the following equations for the region in back of the voluminal 
wave front: 

T mln ‘P- tih) + v/r% (ik)la+x2 dh 

ix 

7 
s 

x Re {Cl (ih) [ilr + I/[cp+(iS)” -I- xsc”) F 

$: G1 (ih) [ihz -t_ I/[~L (ih)lz+z’} dh 

(3.3) 

(3.4) 
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Here &$O/;)r (v = 0, 1) denote terms corresponding to residues of the 
possible poles of the functions G,(c) 5-? 

In Formulas (3.3), (3.4) the upper or lower signs are to be chosen by 

the same rule as in Formulas (2. l), (2.2). 

For the region between the voluminal and head wave fronts we have 

(Z.6: 

where h’ is the same as in Formulas (2.3). 

4. We give now the simplest application of some of the formulas exam- 
ined above. We investigate the wave picture on the boundary z = h separat- 
ing two media. For the sake of simplifying the computation we shall 
assume that the density p and the wave velocity of transverse waves b 
(and hence the shear modulus as well) are equal in the two media. However, 
the propagation velocities of the longitudinal waves a0 and al are 
different. We place a source in the form of a center of expansion at the 
origin of coordinates in the medium z < h with the larger propagation 

velocity a0 > a1. 

For the given conditions the displacement field at the boundary z = h 

may be represented as the sum of fields of incident and reflected longi- 
tudinal waves. The well known field of the incident waves, which is ex- 
pressible in finite form, is not characterized by any singularities in 
back of the wave front. Hence, in the sequel we are concerned only with 
the field of vertical and horizontal displacements, w and p, in the re- 
flected wave. For an excitation whose time variation is that of the 
Heaviside E function, it can be represented in accordance with [31 in 
the form of the Pollowing integrals 

00 a+iw 
w=ra_K ’ 

\I I 
a1 - a0 

Bn’ph’ & a_-ia, i (al + ao) 5% 
ek(sc-a,) dT, 

I 
Jo (kz) dk 

0 

co o+ica 

Q 
---a d 1 c---- Q1- % 

8nsphY aT X HS i(c1+ao)coP 
t+(+~-=o) dc J1 (kz) dk 

0 a--i00 

(4.1) 

(4.2) 

Here 

ra -_ v/i + r*cw, a1 = v/1 + Aa6a, 7 = $ . A=$, 
r 

a?=- 
h’ *=; (4.3) 
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If Formulas (2.2) and (2.2) are applied and it is taken into account 
that the integrands in (4.1), (4.2) do not have poles, then one obtains 
the eauat ions 

r’ 
w = r+Lha (AZ - 73) 

(4.4) 

VA 
l/U ihr- I aa 1 

9 
-Y 

= n’yh* (A’ -yr’) 
l/A 

I/(iLZ-- 1 aQ I)‘+?? dk 
(4.5) 

and the argument of the radical \I (ih? - Irxe\ 2 t x2) should be in the in- 

terval (0, - v/2). 

At the wave front (at -r = y \I (1 + x2) the integrals in Formulas (4.4), 
(4.5) are of finite form. Performing these integrations, we find the 
following values for the antiderivatives of the displacements 

H 

! rs 
W (x) dt = 4fipLh” (h” _ y’) 

A2 + T2 + (Aa - TX) z8 - 27 v A.’ + W-T’) dJ 
- (1 + 21”)” 

(4 7j 

rc 
q (r) dz = - z \ w(z) dt (# =~‘c/i+z’-+o) (4.3) 

c 

Formula (4.8) shows that for large values of x the horizontal compo- 
nents of the displacements at the wave front will be an order of magni- 
tude larger than the corresponding vertical displacements. 

Calculations were carried out according to Formulas (4.4), (4.5), 
(4.7) and (4.8) for the values y = l/3, A = l/2, x = 10. The trapezoidal 
quadrature formula was used for the interval of integration divided into 
ten parts. 

Be give here the results of the calculations of the antiderivatives 
(the factor 8/105 p(vh)2 is omitted) IO* and q* of the field of displace- 
ments w and p for certain values of the argument T = bt/h: 

Z = 3,35 
UP* = 3,05 1: 3 

2114 
it i: 
12:4 

1: 1 
5.5 10 

4140 
‘10.2 :48 ! 32 3.98 

q* =30,5 1.71 1:oi 01210 0.0840 

The computations show that instants of time close to ‘I = 5 are charac- 
terized by a sharp change in the wave field, corresponding to a head wave 
of surface type [Q]. The so-called transverse “nondiscontinuous” surface 
waves discussed in [lo-141 are related to this kind of wave. 
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Earlier examples wherein exact solutions are transformed into real 

integrals which are evaluated by quadrature formulas may be found in [5, 

13,15-171 (for particular, simpler problems). In contrast to previous 

results, the formulas derived here are characterized by great generality 

and rid one of the necessity of separating out the singularities on the 

wave fronts. 

In the literature there are many efforts devoted to various approxi- 

mate asymptotic investigations (often without regard of the errors in- 

volved) of reflected, refracted, and head waves for sharp and weak inter- 

faces; to estimates of oscillations propagating at angles which are close 

to the limiting angle; to the study of shielding; to the determination of 

the wave field in the neighborhood of a source, etc. All of these prob- 

lems, as well as a number of others (particularly when it is difficult 

to apply a reliable asymptotic method), can be solved to an arbitrary 

degree of accuracy by means of a single numerical scheme that utilizes 

the formulas that have been introduced. Further, a significant part of 

the numerical work done for one problem can often be used in the solution 

of other problems. 
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